

USEMARCON

User Controlled Generic MARC Converter

Manual

USEMARCON - MARC Record Converter
Version 3.17

Adapted by Crossnet Systems Limited under contract to The British Library
Adapted by ATP Library Systems Ltd, Finland, 2002-2004

Adapted by The National Library of Finland, 2004-2011
Copyright 2000 - The British Library, The USEMARCON Consortium

March 2011

This product includes software developed by the University of California, Berkeley and its
contributors.

Unicode support library utf8proc is Copyright (c) 2006-2007 Jan Behrens, FlexiGuided GmbH,
Berlin.

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax
and semantics are as close as possible to those of the Perl 5 language.

Release 7 of PCRE is distributed under the terms of the "BSD" licence, as
specified below. The documentation for PCRE, supplied in the "doc"
directory, is distributed under the same terms as the software itself.

The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk

University of Cambridge Computing Service,
Cambridge, England.

Copyright (c) 1997-2007 University of Cambridge
All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2007, Google Inc.
All rights reserved.

THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 * Neither the name of the University of Cambridge nor the name of Google
 Inc. nor the names of their contributors may be used to endorse or
 promote products derived from this software without specific prior
 written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

TABLE OF CONTENTS

1. INTRODUCTION ... 5

Background to the Project .. 5
Background to the Standalone Batch Version.. 6
Basic Concepts.. 6

MARC Formats ... 6
Brief Description of Functionality .. 7

Modular Design .. 7
Use of Tables.. 7

MARC Formats That May be Translated by USEMARCON 8
Conversions Available .. 8

2. INSTALLATION AND GETTING STARTED ... 8
Installation ... 8
Running the USEMARCON Software ... 9

3. SYSTEM COMPONENTS ... 9
File Names ... 9

Creation and Maintenance of System Files ... 9
File/Directory Naming Conventions ... 10

Description of System Files ... 10
Program Initialization Files ... 10
Rules Files .. 10
Look Up Tables .. 11
Format Checking Tables ... 11
Character Set Translation Tables ... 11
MARC Format Configuration Files ... 11

Example Conversion ... 11
4. SYSTEM FILES ... 11

Overview .. 11
Conventional Abbreviations ... 11
Initialization File (.ini) .. 12

Format ... 12
Look Up Table (.tbl) ... 15

Format ... 16
Format Checking Table (.chk) .. 19

Format ... 19
Character Set Translation Table (.trs) .. 20

Format ... 21
Configuration File (.cnf) .. 22

Format and Example .. 22
Rule Files (.rul)... 23

5. RULE FILES .. 23
Overview .. 23
Format .. 23
Contents of a Bibliographic Record .. 27
Content Designators ... 27

Link between Input CD(s) and Output CD(s) ... 29
Occurrences ... 30
Occurrences in CDIn and CDOut .. 31
Rule File Structure ... 33

Rules ... 35
Basic Concept .. 35

Variables ... 35
Instructions .. 37

Comments and Multi-line Rules ... 49
6. ERROR MESSAGES ... 51

Format .. 51
Error Definitions .. 51

6. USING USEMARCON IN ANOTHER APPLICATION 52
Usemarcon object ... 52
Upgrading to version 3 from older versions ... 53

1. INTRODUCTION

Background to the Project

Different national MARC (MAchine Readable Catalogue) standards are seen as barriers to wider
exchange of bibliographic records in Europe and beyond. Throughout the world nearly 50
different MARC formats are currently in use, with 10 employed in the national libraries of
European Community countries. Such variation is a fundamental problem for libraries wishing to
obtain or supply data internationally and often results in the re-cataloguing of material for which
records are readily available in formats other than the library’s own. Lack of language expertise or
knowledge of the context of publication can lead to the creation of records of a significantly
inferior quality to those which might otherwise have been obtained from an agency in the country
of publication.

The aim of the USEMARCON Project is to develop a generic conversion program capable of
translating bibliographic records created in any ISO 2709 compatible MARC format (e.g
UKMARC) into any other ISO 2709 MARC format (e.g. InterMARC) using UNIMARC as a
central switching format. It is also possible to convert directly from a MARC format to another
without using UNIMARC in between.

The development of the USEMARCON software was supported by the European Union’s
Telematics Applications Programme (DG XIII-E).

The partners of the USEMARCON consortium are drawn from a variety of library and
information technology backgrounds and comprise the following:

Co-ordinating Partner
Koninklijke Bibliotheek, Holland

Full Partners
Instituto da Biblioteca Nacional e do Livro, Portugal
The British Library, UK

Associate Partner
Die Deutsche Bibliothek, Germany

Original Software Developer
Jouve, Systèmes d'Information, France

The original USEMARCON software was designed to provide users with two specific services.

1. The facility to convert MARC records compliant with a specified input format into MARC

records compliant with a specified output format.

2. The facility to create and modify rules files, used to achieve MARC conversions, in order to

meet specific local requirements. The present software is designed to be used by senior
cataloguers or others with a detailed knowledge of the structure of the MARC formats they
wish to convert between.

The USEMARCON Graphical User Interface (GUI) was designed for use with both MS Windows
(3.1x and ‘95) and Unix Motif environments, in the latter case running under the Sunsoft Solaris
operating system. In the Windows environment USEMARCON used a Multiple Display Interface.

Background to the Standalone Batch Version

The USEMARCON software developed on the USEMARCON project was heavily reliant on the
XVT toolkit. Any modifications to the software by anyone required the XVT DSP++ development
package.

The British Library published "A Feasibility Study To Investigate If The Usemarcon Software
Can Be Adapted To A Command-Line Environment" in August 1999, which concluded that
portability to command line scenario was possible, and this has been performed under contract.
This version of the User Manual is applicable to the Standalone Batch version.

Initial Batch Version Software Developer
Crossnet Systems Limited, UK

Since the initial version the batch version was modified by ATP Library Systems Ltd. It is
currently (as of 2005) maintained by Ere Maijala at the National Library of Finland. See the
CHANGES file in the root directory of the package for more information.

Basic Concepts

Bibliographic data conversion requires the processing of:

 MARC bibliographic data, including related blocking and padding characters
 Conversion rules for specifying the conversion of each data element of the input format into

each data element of the output format
 Coded data tables corresponding to sets of codes used by the format, e.g. language of

publication, country of publication
 Character set tables specifying the translation of individual character codes between input and

output formats
 Format checking tables specifying valid elements of input and output formats

MARC Formats

The MARC format family was created through a Library of Congress project, initiated in 1964, to
prepare bibliographic information for automated processing. Different national MARC formats
were created in response to specific national needs according to their local cataloguing rules and
operating environments. The principles of MARC formats are to structure the bibliographic data
into fields and subfields as in the following UNIMARC example:

Tag Indicators Subfield
delimiter

Title proper Subfield
delimiter

Sub-title

200 1b $a UNIMARC $e Cataloguing Manual

A tag is a three digit number that defines a bibliographic condition. Indicators are two single digit
numbers which supply additional information about the contents of the field. Where an indicator is

undefined the character position generally contains a blank (represented by b). Subfield delimiters
are introduced by a special control character (often conventionally represented by$) followed by a
letter or a number qualifying the data element in the field. ($a, $b or $1, $2). Some fields contain a
single fixed length subfield with the data coded in fixed positions. The format specifies whether
each field and subfield are mandatory, optional or conditional upon another data element.

Brief Description of Functionality

Modular Design

The software has been developed to work on a modular basis allowing the user to perform at
several levels of conversion. These can range from simple character set or exchange format
translations using individual tables to full MARC format conversions using an entire ‘cluster’ of
tables and rules.

USEMARCON reads all conversion parameters from an INI file. This INI file is a mandatory
command line parameter to the program.

Bibliographic data conversion requires the processing of:

 MARC bibliographic data, including related blocking and padding characters
 Conversion rule for specifying the conversion of each data element of the input format into

each data element of the output format
 Coded data tables corresponding to sets of codes used by the format, e.g. language of

publication, country of publication
 Character set tables specifying the translation of individual character codes between input and

output formats
 Format checking tables specifying valid elements of input and output formats

The software makes use of files containing simple ASCII tables rather than compiled files to carry
out conversions. These files may therefore be created or customised to ensure conversions
accurately reflect local requirements. All the tables may be created or edited using a text editor
such as Windows Notepad. There is also a separate program developed by the National Library of
Finland, USEMARCON GUI, that facilitates creating and running conversions. See
http://www.kansalliskirjasto.fi/kirjastoala/formaatit/gui.html for more information (the page is
currently only available in Finnish, but the program itself is in English).

As the program is performing its conversion, it displays a running total of how many records have
been read from the input file, and an approximate percentage of completion.

Details of processing problems are stored in a report file and classified by the following error
types: input format, MARC checking in input, character translation, coded data translation,
conversion, MARC checking in output and building of the output MARC file.

Diacritics and other extended characters are always displayed in hexadecimal code in order to
allow users to check the accuracy of character translations.

Use of Tables

As the software makes use of simple ASCII tables rather than compiled rules to guide
conversions, users can create or customise these files to ensure conversions accurately reflect local

requirements. Visual representation of how USEMARCON makes use of tables to facilitate record
conversion is shown below.

USEMARCON
Conversion FunctionalityMARC File In MARC File Out

U
se

r I
nt

er
fa

ce

In
pu

t C
he

ck
in

g

C
ha

ra
ct

er
 T

ra
ns

la
tio

n

R
ul

es
 /

Lo
ok

-u
ps

Report

O
ut

pu
t C

he
ck

in
g

MARC Formats That May be Translated by USEMARCON

The USEMARCON program can deal with records compliant with the ISO 2709 standard for the
exchange of bibliographic information (commonly known as the MARC Communications or
Exchange format), MARCXML or MarcXchange. USEMARCON cannot process data in formats
which do not conform to these standards (e.g. the German MAB or Dutch PICAPLUS formats).

In order to assist the processing of data from a variety of sources, users are provided with the
facility to specify many details of structure used for ISO 2709 input and output files, including:
blocking factors, use of segmentation characters, minimum size of usable data blocks and padding
characters.

Conversions Available

USEMARCON does not come with prebuilt conversions. It only contains a sample UNIMARC to
UKMARC conversion and provides the facility for creating such conversions. Many conversions
have been developed by different organisations, so asking around might be beneficial. For
example The National Library of Finland has built a conversion from MARC21-Fin to MARC 21
utilising many of the recent USEMARCON features, and while it wouldn’t be useful as is, it
demonstrates many of the current capabilities.

2. INSTALLATION AND GETTING STARTED

Installation

The USEMARCON distribution zip package comes with a Windows executable version of
USEMARCON. There is no installation program. It is sufficient to copy the program
usemarcon.exe to a suitable directory and use it from there.

For Linux and UNIX systems an Autoconf/Automake build system is provided. See the
accompanying BUILDING file for more instructions.

Running the USEMARCON Software

To run USEMARCON in Windows:

1) Open a command line window

2) Change directory to where the USEMARCON executable was installed or refer to the program
using a valid path

3) Ensure that you have prepared an .ini file and that the associated conversion files are located as
per the .ini file.

4) Run the software like:
 usemarcon <path>\my.ini [input file] [output file]

where path is the full or relative path name to where the .ini file is located.
You can substitute my.ini for your actual ini file name.
Input and output files are optional. If specified, they override the settings in the ini file. This could
be used for example for batch processing of multiple files or creating a drag target on the desktop.

The software will then start the conversion and show status and possible errors.

You can also download and use USEMARCON GUI (see
http://www.kansalliskirjasto.fi/kirjastoala/formaatit/gui.html). It provides a graphical user
interface for Windows users.

Usage in Linux and UNIX systems is similar, but a slash must be used in the paths instead the
backslash.

 3. SYSTEM COMPONENTS

File Names

Creation and Maintenance of System Files

New directories for new conversions may be created at any time using any preferred file manager
program or from the system command line. The files and tables required for the conversion may
then be copied to or created in the new directory by the user. The system files supplied with the
USEMARCON software are given defined suffixes detailed below in Description of System Files.
In order to access easily the supplied system files it is recommended that the MS Windows
Associate Application option is used to launch the preferred editor automatically after double
clicking on a USEMARCON table or rules file. For further information on associating
applications please refer to the MS Windows Help system.

A separate simple graphical user interface, USEMARCON GUI, is available from the National
Library of Finland. It makes it somewhat easier to develop new conversions and test them. See
http://www.lib.helsinki.fi/kirjastoala/formaatti/konversiot/gui.htm for more information (sorry, the

page is currently only available in Finnish, but the program itself is in English).

File/Directory Naming Conventions

Since the program does not offer any form of rule editing, we advise that you retain any
conventions for file names and extensions that you currently use.

Three letter filename suffixes must be used to denote the use of particular files. Suggested suffixes
are:

.ini - program initialization file - used with each conversion

.rul - conversion rules file - used with each conversion

.tbl - conversion look up table - only used in combination with a rules file.

.chk - MARC format checking table - (optional) used to validate MARC input and/or output
files

.trs - character set translation table - (optional) used to convert from the character set of the
input MARC format to that of the output format

.cnf - MARC format configuration file - only used in combination with MARC input and output
files

Description of System Files

Program Initialization Files

A program initialization (.ini) file lists all parameters necessary to perform a particular conversion.
These include the names for each default system file, default parameters for processing input and
output MARC files and preferred operation modes. The values contained in the .ini file may be
modified using any Windows text editor such as Notepad. Beginning with version 1.3 the full
paths for the files are not required anymore nor encouraged if they reside in the same directory as
the INI file.

Rules Files

The rules governing a specific MARC conversion are held in a single rules file (.rul). The rules
file describes precisely how the fields and subfields of the input MARC records should be
converted into their counterparts in the output MARC format. This is achieved through the
manipulation of input and output Content Designators (CDs), specific to each format, using a
sophisticated rule syntax. The language used to create rules includes six main types of instruction:

 conditional
 boolean
 loop
 memory
 conversion

 translation

A rules file can be created or edited with any standard text processing program e.g. MS Windows
Notepad or using the separate USEMARCON GUI.

Look Up Tables

Look up Tables (.tbl) are used to hold large amounts of tabular information (e.g. ISO Standard
country codes) which are required by a conversion rules file. Data is held separately in a table to
allow easier maintenance of the main rules file. Unlike other conversion files Look up Tables are
commonly named to reflect their function e.g. ill.tbl for a table of illustration codes.

Format Checking Tables

A MARC Format Checking Table (.chk) describes the valid features of a particular MARC
format. The table lists all fields and subfields of the format together with occurrence qualifiers and
field indicator values. Use of these tables allows the input and output data to be checked for
compliance with the specified format.

Character Set Translation Tables

Different MARC formats often require the use of different character sets. The USEMARCON
system therefore incorporates the ability to convert between different specified character sets. This
process is handled by the use of Character Set Translation Tables (.trs) which map individual input
to output characters. The character set table need only deal with non-standard characters as
conventional ASCII characters (e.g A-Z, a-z 1-9 etc.) are specified in a default character set table
(standard.trs).

MARC Format Configuration Files

Format Configuration Files are used to signify fields in a particular MARC format which have no
indicator values e.g. 001 or 008 in the UKMARC format.

Example Conversion

An example UNIMARC to UKMARC conversion can be found in uni2uk directory of
USEMARCON distribution.

4. SYSTEM FILES

Overview

This Chapter describes the precise file formats for each of the system file types except the rule file
which is dealt with in Chapter 2.

All the files are simple text files which may be created using a text editor such as MS Windows
Notepad.

Conventional Abbreviations

In the summary of the format the following conventional abbreviations will be used:

Line is a special part describing the whole line of a file
<name> is a part of the description, which must be described
 somewhere else
::= describes the left part with the right part
 (<name> ::= <part1><part2>)
<p1><p2> are two following parts of a description
<p1>|<p2> are two possible descriptions of a part
[<p1>] is an optional part
<p1>+ is a mandatory and repeatable part
<p1>* is a repeatable but optional part
(<p1><p2>)+ () groups parts to give them an occurrence
'string' is a literal character string
digit is a decimal digit between 0 and 9
hdigit is an hexadecimal digit between 0 and F
number is a number
byte is a number between 0 and 255
char is a character other than a digit
string is a character string
words is a set of character strings

Initialization File (.ini)

The USEMARCON program uses a file to store a default set of system files and parameters to
enable the user environment and system information to remain uniform between sessions. This file
is used in MS Windows and Unix versions of USEMARCON. For example, the initialization file
is used in the command line launching USEMARCON for a UK to UNIMARC conversion in the
following way:

C:\usem\usemarcon.exe c:\usem\uk2uni.ini

The values contained in the .ini file may be modified using any text editor (such as Notepad in
Windows). Please note that in some operating systems file names are case sensitive. Always use
the correct case to ensure maximum compatibility between platforms.

Format

The file has a typical MS Windows structure:

[section]
entry=string
 .
 .
 .

Example:

[DEFAULT_FILES]
ErrorLogFile=errlog.txt
RuleFile=uni2uk.rul
TranscodingCharacterTable=iso2blec.trs
InputFormatCheckingTable=uni.chk
OutputFormatCheckingTable=uk.chk
MarcInputFile=UNI.MRC

MarcOutputFile=uk.mrc
InputMarcEditConfigurationFile=uni.cnf
OutputMarcEditConfigurationFile=uk.cnf

[DEFAULT_MARC_ATTRIBUTES]
IsInputBlockSegmentedChecked=
IsInputLastBlockPaddedChecked=
InputMarcSizeBlock=2048
InputMarcMinDataFree=5
InputMarcPaddingChar=5E
InputFileFormat=ISO2709

IsOutputBlockSegmentedChecked=FALSE
IsOutputLastBlockPaddedChecked=FALSE
OutputMarcSizeBlock=2048
OutputMarcMinDataFree=5
OutputMarcPaddingChar=5E
OutputFileFormat=ISO2709
OutputXMLRecordFormat=MARC21
OutputXMLRecordType=Bibliographic

[DEFAULT_VALUES]
MaxErrorsToBeEncountered=19999
OrdinalNumber=1
UpdateOrdinalNumber=FALSE

[DEFAULT_STATES]
IsVerboseExecutionModeChecked=
UTF8Mode=FALSE
ConvertInFieldOrder=TRUE

[DEBUG]
IsDebugExecutionModeChecked=FALSE

NB: Beginning with version 1.3 it is no longer necessary or encouraged to include full paths in the
file names. USEMARCON can find the files if they reside in the same directory as the ini file.

The values in [DEFAULT_FILES] section define the files used in the conversion. RuleFile is the
only mandatory file.

The values in [DEFAULT_MARC_ATTRIBUTES] section describe the layout of the MARC
files. Segmented files seem to be rarely encountered.

InputFileFormat tells USEMARCON what the expected format of the input file is. Default is
ISO2709. In most cases USEMARCON (as of version 3.13) can automatically detect if the input
file is XML even when ini file has setting InputFileFormat=ISO2709. This can also be forced by
setting InputFileFormat=MARCXML.

To make USEMARCON output MARCXML, set OutputFileFormat=MARCXML. Default for
output is ISO2709. To process MarcXchange records, use MARCXCHANGE instead and set
OutputXMLRecordFormat and OutputXMLRecordType to values to be written into the resulting
XML. XML can also be converted to ISO2709 and vice versa by only specifying the input or
output format. For example to convert MARCXML records to MarcXchange use the following
settings:

InputFileFormat=MARCXML
OutputFileFormat=MARCXCHANGE
OutputXMLRecordFormat=MARC21

OutputXMLRecordType=Bibliographic

To convert ISO2709 to MARCXML:

InputFileFormat=ISO2709
OutputFileFormat=MARCXML

Note that the input XML is not validated for correctness. Either it can be successfully read or
USEMARCON fails to find any records or fields.

[DEFAULT_VALUES] section controls different values.

 MaxErrorsToBeEncountered: maximum number of errors that can occur before the
conversion is aborted.

 OrdinalNumber: a number that can be used during the conversion (see Ordinal
instruction). It is automatically incremented for each record. Unsafe in situations where
multiple conversions could be done simultaneously.

 UpdateOrdinalNumber: Controls whether OrdinalNumber in the .ini file can be updated
after the conversion. This procedure is not safe if the conversion is used in an environment
where multiple conversion can happen at the same time and defaults to being disabled.

 DuplicateSubfields: Controls how duplicate subfields are processed. Possible values are:
o leave (or empty): default, no action is taken
o delete: matching subfields in a field are deleted (case-sensitive)
o delete_ignore_case: matching subfields in a field are deleted (case-insensitive)
o delete_smart: matching subfields in a field are deleted (case-insensitive). The

better-looking subfield (read: less capital letters) is kept.
Note: case-insensitivity only works with UTF-8 records.

 DuplicateFields: Controls how duplicate fields are processed. Possible values are:
o leave (or empty): default, no action is taken
o delete: matching fields in a record are deleted (case-sensitive)
o delete_ignore_case: matching fields in a record are deleted (case-insensitive)
o delete_smart: matching fields in a record are deleted (case-insensitive). The better-

looking field (read: less capital letters) is kept.
Note: case-insensitivity only works with UTF-8 records.

[DEFAULT_STATES] section controls the following:

 IsVerboseExecutionModeChecked: Controls whether messages are printed when errors
etc. happen.

 UTF8Mode: Controls whether string functions should treat strings as UTF-8. If TRUE,
UTF-8 multibyte characters are considered a single character in for example From and To
to make the string functions work properly when characters are counted. Defaults to
FALSE.

 ConvertInFieldOrder: Controls whether the conversion is done in field order or the
traditional rule order. Field order makes it easier to for example handle repeated fields that
are not mapped 1 to 1 in a smart way. It also implies smart wildcard matching that doesn’t
match a field already matched by a non-wildcard rule. It is suggested that
ConvertInFieldOrder be set TRUE for any new conversions. Here is an example of a
case where field order is necessary:

Source data:

500 $a First note $b Additional info
500 $a Second note
500 $a Third note

Rules:

500$a | 500(1)$a | + If (D != '') Then '. ' + S Else S
500$b | 500(1)$a | + ' (' + S + ')'

Result:

500 $a First note (Additional info). Second note. Third note.

If using rule order the result might be something like this:

500 $a First note. Second note. Third note. (Additional info)

 HandleLinkedFields: Controls whether linked 880 fields are handled side by side with the
original fields avoiding the need to duplicate rules for them. If TRUE, the special handling
is enabled. Defaults to FALSE. Subfield $6 is automatically retained and updated. Side by
side handling is only available for a subset of functions and won’t work properly for
control fields. Currently the following operations support linked fields:

o Concatenation (+)
o From
o To
o Between
o Replace
o ReplaceOcc
o RegReplace
o RegReplaceTable
o MoveBefore
o MoveAfter
o MoveFirst
o MoveLast

 ConvertSubfieldCodesToLowercase: If TRUE, all subfield codes from A to Z are
converted to lowercase. Default is FALSE.

 SortRecord: If FALSE, does not sort the fields in the output records (except those created
during the conversion using <XYZ notation). Default TRUE.

Look Up Table (.tbl)

Look Up Tables (.tbl) are used to hold large amounts of tabular information (e.g. ISO Standard
country codes) which are required by a conversion rule file. Data is held separately in a table to
allow easier maintenance of the main rule file. A rule can therefore be written which will ‘call’ the
table rather than actually containing the information in the table.

Example:

008/16-17/ | 102$b | Table ('Region.tbl')

Unlike other conversion files Look Up Tables are commonly named to reflect their function e.g.
ill.tbl for a table of illustration codes.

Each Look Up table used in a Rule file is defined in a separate file. Each file bears the name of the
table used in the Rule file.

Format

The first and second lines of the file may contain comments such as the name of the file, or a
description of its function. The table itself must start on the third line of the file.

Each line of the table can be either:

 An #include line. This enables the loading of another table of coded data as part of the current

file.

 A translation line. This contains the characters in the input record and the characters to which

they are to be translated in the output record, separated by a pipe character.

The format of the translation line is as follows:

Character (or sequence of characters), space or tab, pipe character (|), space or tab, character (or
sequence of characters).

i.e. <characters in> | <characters out>

Example:

pubcode.tbl

s | d
r | e
m | a
z | e

Optionally, a comment may be added to the end of the line. The comment must be preceded by
two slashes (//).

i.e. <characters in> | <characters out>//<comment>

Example:

Genre littéraire Interuni

0x30 | a //Fiction adulte
0x31 | a //fiction adolescent
0x32 | a //fiction enfants
0x33 | y //document pédagogique enseignement supérieur
0x34 | y //document pédagogique enseignement primaire
...

Each character can be described as its ASCII representation, as its hexadecimal value (preceded by
0x), or its decimal value.

Numbers must be described by their decimal or hexadecimal value e.g. 0x31 for 1, because 1 does
not mean ‘1’ but the character whose ASCII value is decimal 1.

When typing words in a Look Up Table, each character of each word must be separated by a
space. A set of words, normally separated by a blank character should be shown as separate words
by the hexadecimal of the blank character i.e. 0x20.

Example:

538.tbl

0x30 | I s s u e 0x20 n o . // 30 is the hex for ‘0’, 20 is the hex for
‘space’
0x31 | M a t r i x 0x20 n o .
0x32 | P l . 0x20 n o .
0x33 | P u b l i s h e r ' s 0x20 n o .

Each character or sequence to be translated will either match or not match one character or
sequence of the first column of the table. The translation software searches for the longest
matching sequence. In order to prevent ambiguity with shorter sequences, the longest one will be
chosen.

If a character or sequence in the input record matches a character or sequence in the first column
of the table, it will be replaced in the output record by the character or sequence in the second
column of the table.

A default may also be set to take care of cases where no sequence in the input record matches a
sequence in the input column.

The #DEFAULT entry must be entered in the form:

#DEFAULT, space or tab, pipe, space or tab, character (or sequence of characters)

i.e. #DEFAULT | <characters out>

Example:

aud.tbl

a | j
b | j
c | j
d | j
#DEFAULT | 0X20

In the example above, if the input record does not contain a, b, c or d then the blank, represented
by the hex code 20, will be inserted in the appropriate position in the output record.

A magic token COPY can be used as the characters out. This will make the default action copy the
input directly to output without conversion. This way only the characters that need conversion
need to be listed and others can be copied as is.

Example:

aud.tbl

a | j

b | j
c | j
d | j
#DEFAULT | COPY

If no sequence in the first column matches and a #DEFAULT entry does not exist, the input
sequence of word(s) will be suppressed in the output and an error message will be logged in the
report file.

Summary:

Line ::= <include line> | <translation line>
<include line> ::= '#include 'string' '
<translation line> ::= <words in> '|' <words> [// words]
<words in> ::= <word>+ | #DEFAULT
<words> ::= <word>+
<word> ::= (<character> ‘b’)*

Format Checking Table (.chk)

A MARC Format Checking Table (.chk) describes the valid features of a particular MARC
format. The table lists all the fields and subfields allowed in records, their occurrences and the
ordinal number of fixed length fields or subfields.

For each MARC format conversion two tables are required: the first to check input records (with a
particular format) and the second to check output records

Use of these tables allows the input and output data to be checked for compliance with the
specified format.

The UNIMARC to UKMARC Format Checking Tables can be found in Appendix 4.

Format

A Format Checking Table is a simple text file. The first line may contain a comment such as the
name of the format.
Each following line can be either:

 An #include line. This enables the loading of another checking table as part of the current file.
 A description line. This describes a field, its occurrence, its indicators and its subfields.

Each line must have the following structure :

1. A field tag e.g. 245
2. A character from the following list:

 _ means that the field is mandatory, not repeatable,
 + means that the field is mandatory and repeatable,
 ? means that the field is neither mandatory nor repeatable,
 * means that the field is not mandatory but can be repeatable.

3. Space or tab, pipe character (|), space or tab.
4. I1=

This should be followed by a list of valid values for the first indicator. Blank should be
represented by _. The fill character (|) is represented by a space then the hex value e.g. 0x7C

5. Space or tab, pipe character (|), space or tab.
6. I2=

This should be followed by a list of valid values for the second indicator. Blank should be
represented by _. The fill character (|) is represented by a space then the hex value e.g. 0x7C

7. Space or tab, pipe character (|), space or tab.
8. A list of the subfield delimiters allowable for the tag.

The delimiters are introduced by a control character, usually represented by $. This is
followed by a letter or digit identifying the subfield e.g. $a.
The delimiter is then followed by a character from the list at 2 above, to indicate its
repeatability, etc.
The delimiters must be separated from each other by space or tab, pipe character (|), space or
tab.

9. An optional text comment preceded by two slashes (//).
This may also be inserted above the field tag. Note that // is very strong, and if it’s needed in a
string literal, the slashes must be escaped with backslashes (e.g. 'http:\/\/www..').

This file enables the verification of the occurrence of fields or subfields, but does not verify that a
particular field or subfield may only be repeated a particular number of times e.g. twice. This file
only verifies fixed structures and if the occurrence of a field/subfield is linked to particular
Indicator values these cannot be checked.

Each field found in a record is compared with this table and if an error is detected, it will be
logged in the Error Log File (see Chapter 3).

Example:

UNIMARC format
…
#include deb_uni.fmt
…
001_ | I1= | I2= |

100_ | I1=_ | I2=_ | $a_

101_ | I1=012 0X7C | I2=_ |$a* | $b* | $c* | $d* | $e* | $f* | $h* | $i* |
$g? // Mandatory, not repeatable. I1 can be fill character. $g optional not repeatable, rest
optional & repeatable
…
200_ | I1=01 | I2=_ | $a+ | $b* | $c* … //
Title
700* | I1=_ | I2=012 | $a_ | $b? | $c? | $d? | $f? … //
Author

Summary:

Line ::= <include line> | <checking line>
<include line> ::= '#include 'string' '
<checking line> ::= <field tag> '|' <I1> '|' <I2> '|' <subfields> [// words]
<field tag> ::= <tag><occurrence>
<tag> ::= number
<occurrence> ::= _|+|?|*
<I1> ::= 'I1='<indicator value>*
<I2> ::= 'I2='<indicator value>*
<indicator value> ::=_|digit
<subfields> ::= <subfield>['|'<subfields>]
<subfield> ::=<subfield tag><occurrence>
<subfield tag> ::= '$'char|digit

Character Set Translation Table (.trs)

Different MARC formats often require the use of different character sets. The USEMARCON
system therefore incorporates the ability to convert between different specified character sets. This
process is handled by the use of Character Set Translation Tables (.trs) which map individual input
to output characters. Conversion for basic ASCII characters can be included from a default
character set table (standard.trs). A #DEFAULT rule can also be used (see below).

The UNIMARC to UKMARC Conversion Character Set Translation Tables can be found in
Appendix 5.

Format

The first and second lines of the file may contain comments such as the name of the file, or a
description of its function. The table itself must start on the third line of the file.

Each line of the table can be either:

 An #include line. This enables the loading of another table of coded data as part of the current

file.
 A translation line. This contains the characters in the input record and the characters to which

they are to be translated in the output record, separated by a pipe character.

The format of the translation line is as follows:

Character (or sequence of characters), space or tab, pipe character (|), space or tab, character (or
sequence of characters). Optionally, a comment may be added to the end of the line , which must
be preceded by two slashes (//).

i.e. <characters in> | <characters out>//<comment>

Each character can be described as its ASCII representation, as its hexadecimal value (preceded by
0x), or its decimal value.

Numbers must be described by their decimal or hexadecimal value (0x31 for 1), because 1 does
not mean ‘1’ but the character whose ASCII value is 1.

Each character or sequence to be translated will either match or not match one character or
sequence of the first column of the table. The translation software searches for the longest
matching sequence. In order to prevent ambiguity with shorter sequences, the longest one will be
chosen (see example below).

If a character or sequence in the input record matches a character or sequence in the first column
of the table, it will be replaced in the output record by the character or sequence in the second
column of the table.

A default may also be set to take care of cases where no character sequence in the input record
matches a sequence in the input column.

The #DEFAULT entry must be entered in the form:

#DEFAULT, space or tab, pipe, space or tab, character (or sequence of characters)

i.e. #DEFAULT | <characters out>

Example:

char.tbl

a | a
b | b
c | c
d | d
#DEFAULT | 0X20

In the example above, if the input character sequence is not a, b, c or d then it will be replaced
with the blank, represented by the hex code 20.

A magic token COPY can be used as the characters out. This will make the default action copy the
input directly to output without conversion. This way only the characters that need conversion
need to be listed and others can be copied as is.

Example:

aud.tbl

ä | -
#DEFAULT | COPY

If no character or sequence in the input record matches a character or sequence in the first column
and #default is not specified, the current input character is written in the output record and an error
message is generated.

Example:

iso5426
ASCII
#include basic.trf
0xA3 | 0x9C // Pound character - simple translation
0xCA | 0xF8 // Degree - if 0xCA appears before an A see below
0xCA A | 0x8F // A with circle above
0xBF | // The inverted question mark is not
 // translated.

Summary:

Line ::= <include line> | <translation line>
<include line> ::= '#include 'string' '
<translation line> ::= <chars> '|' <chars> [// words]
<chars> ::= <char>+
<char> ::= <hexa>|<deci>| char
<hexa> ::= 0xhdigit hdigit
<deci> ::= byte

Configuration File (.cnf)

This file describes fields that have no indicator in the corresponding MARC file. There is one
configuration file for the Input MARC file and one for the Output MARC file.

A wildcard character (?) can be used to replace one character. For Example 00? means any field
with a tag beginning with 00.

See Appendix 6 for the UNIMARC to UKMARC Conversion Configuration Files.

Format and Example

00?

010
998
999

If no configuration file is provided, a MARC field is treated as having no indicators if a subfield
delimiter ($) is found within the first two positions of the field contents. If the tag is of the format
00X i.e. is a control field, and no subfield delimiter appears in the field contents, it is treated as
having no indicator. If the tag is of the 00X format but a subfield delimiter is found after the first
two positions of the field contents, the first two positions are treated as being indicators. Every
field which begins with anything other than 00X and which does not have $ in the first two
positions of the field contents, are treated as having indicators.

Rule Files (.rul)

In order to convert records from one format to another the software must be given instructions on
what to do with each part of each field and subfield of the input record, in order to create the
output record.

These instructions are written in a rule file. There is no generic rule file. The instructions written
in a rule file are specific to the format of the records in the database to be converted, and the
required format of the converted records in the database.

The rules governing a specific MARC conversion are held in a single rule file (.rul). The rule file
describes precisely how the fields and subfields of the input MARC records should be converted
into their counterparts in the output MARC format. This is achieved through the manipulation of
input and output Content Designators (CDs), specific to each format, using a sophisticated rule
syntax. The language used to create rule includes six main types of instruction:

 conditional
 boolean
 loop
 memory
 conversion
 translation

5. RULE FILES

Overview

This chapter gives the details of how rule files are created. The UNIMARC to UKMARC sample
can be found in uni2uk directory of the distribution.

Format

The first and second lines of the file may contain comments such as the name of the file, or a
description of its function. The actual rules must start on the third line of the file.

Each line of the file can be either:

 An #include line. This enables the loading of another file as part of the current file.
 A #define line. This enables defining the following (see the example below for example of the

syntax):
 Macros that can be used in the rules. Macros can be used anywhere in the file after their

definition. Use distinct macro names that cannot be confused with anything else in the rule
file. With command can be used to set parameters inside the macro. See the example below.
Macros are expanded in the order they are entered in the rule file.

 Note: If you use a macro with multiple instructions inside an If, While, For or With clause,
surround the instructions in the macro with block markers { and }. Otherwise only the first
instruction is taken as the one associated with the condition.

Example:

...
#define macro FieldRef | { Mem(99);\
 If (FLD=880) Then {\
 Sto(99, Val(S) + 1); Mem(99);\
 If (S < 10) Then 'FLD-0' + S Else 'FLD-' +
S;\
 }\
 else\
 {\
 If (S < 10) Then 'FLD-0' + S + '/(N'\ Else
'FLD-' + S + '/(N';\
 }\
 }\

// Clear memory, do nothing else
000 | 000 | '0'; Sto(99); If (0=1) Then S

022I1 | 022I1 | S
022I2 | 022I2 | S
022 | 022$6 | With (FLD=880) FieldRef
022$a | 022$a | Table ('kyril2latinma21.tbl')
022$y | 022$y | Table ('kyril2latinma21.tbl')
022$z | 022$z | Table ('kyril2latinma21.tbl')

022I1 | <AC2I1 | S
022I2 | <AC2I2 | ' '
022 | <AC2$6 | With (FLD=022) FieldRef
022 | <AC2 | + S
AC2I1 | 880(new)I1 | S
AC2I2 | 880(newest)I2 | S
AC2 | 880(newest) | S

 Required rule version number. This can be used verify that the USEMARCON version used

actually does what is expected in the rules. Version number is an integer value, e.g. 300 (the
currently supported version).

Example:

...
#define version 300

 An #if line together with #endif line. This designates a group of rules that are executed
conditionally. Only a single level is currently supported, so #if’s cannot be nested.

Example:

#if (Tag='600' And I1='2')
600I1 | 500I1 | S
600I2 | 500I2 | S
600$a | 500$a | S
#endif

 A translation line. This contains the characters in the input record and the characters to which

they are to be translated in the output record, separated by a pipe character.

If a backslash is appended to the end of the line, it will be merged with the next one. For example:

First line\
Second line

Is parsed to:

First line Second line

The format of the translation line is as follows:

1. A source CD description.
2. Space or tab, pipe character (|), space or tab.

3. A destination CD description.
4. Space or tab, pipe character (|), space or tab.

5. The description of the rule which will enable the conversion of the source CD(s) into the
destination CD

6. An optional text comment preceded by two slashes (//)

(See ‘Content Designators’ in Chapter 2 for the definition of a CD)

N.B. Backslash is the escape character. If you need literal $ in the rule, it needs to be escaped by
prepending it with a backslash: \$ (otherwise it is translated to a subfield delimiter). Any character
can be presented in hexadecimal format by prepending the hex value with a backslash (e.g. n =
\6e). A backslash is presented with \\.

#define macro Replace_A() | { Replace('A' By 'XAN');\
 Replace('-' By '/'); }

245 | 200I2 | ' '
245I1 | 200I1 | If (n=1 Or n=3) Then 1 Else 0
245$a | 200$a | If (I2 = '0') Then S
245$a | 200$a | If (I2 != '0') Then Sto(0);
 Between(1,Val(I2), Strict); Sto(1);
 Mem(0); From(Val(I2)); Sto(2);
 '\88'+Mem(1)+'\89'+Mem(2)
245$b | 200$e |
245$e | 200$f | If (n=1) Then S
245$e | 200$g | If (n>1) Then S
245 | 200 | Sort ('abefg'); With(XAN=B) Replace_A(); //
Replaces 'A' with 'B'

...

Summary:

Line ::= <include line> | <translation line>
<include line> ::= '#include 'string' '
<translation line> ::= <source CD> '|' <destination CD> '|' <rule> [// words]
<source CD> ::= described in Chapter 2
<destination CD> ::= described in Chapter 2
<rule> ::= described in Chapter 2

Contents of a Bibliographic Record

A bibliographic record contains :

 A record label (or Leader) containing fixed position information. For convenience this is

treated as an ordinary field with the arbitrary field tag 000. (In MARC records conforming to
ISO 2709, the record label has no tag, indicators or subfields.)

 A set of fields each of which is identified by an aaa tag (where a is either a numeric or an
uppercase letter).

A bibliographic record can therefore be considered as a set of fields from 000 to ZZZ. Fields may
be either repeatable or not and they may also be mandatory or not.

In addition, fields may be divided into control fields (tags numbered 000-009) and data fields
(tags numbered 010-ZZZ). Control fields contain no indicators and no subfields.

Each data field contains:

 A set of indicators each of one character or one digit. Most formats have two. Throughout

each indicator is treated as a particular subfield named I1 or I2.

 A set of subfields: each subfield begins with a control character followed by a character or
digit indicating the ‘name’ of the subfield e.g. $a. Subfields may be repeatable or not and they
may also be mandatory or not.

A data field can be therefore be treated as a set of subfields like I1, I2 or $x (where x is a digit or a
letter).

Each field or subfield can be either:

 A 'normal' field or subfield, containing text.

 A 'fixed position' field or subfield. When constructing rules, character positions within a
‘fixed position’ field or subfield must be numbered from 1 and not from 0 as in some formats.
For example, the ‘Date entered on file’ in UNIMARC 100$a is described as 100$a/1-8/ not
100$a/0-7/ as it is in the UNIMARC Manual.

Content Designators

To create a rule which will convert a particular part of a record, you must describe in which Tag,
and in which occurrence of that Tag the part is.

If you do not wish to access a complete Tag, you must describe which subfield and which
occurrence of that subfield you want to access.

If the (sub)field is a fixed position subfield, you must describe which position of that (sub)field
you wish to access.

The description above, enables access to one particular part of a record. The description of this
particular part will be named the Content Designator(CD). The CDIn is the Content Designator
for the input file and the CDOut is the Content Designator for the output file.

The structure of a rule file line follows the pattern:

CDIn | CDOut | conversion rule

The three elements are separated by a pipe (|).

In a rule file, a CD may be defined as follows:

 [@|%][TTT[(n1)]] [SS[(n2)]] [/n3[-n4]/]

@ Is only used in conversion rules, not in the CDIn or the CDOut. It is used to avoid

numerical ambiguity in a conversion rule i.e. 100 could either mean the value 100, or
the field 100. @100 makes it clear that the rule is referring to the field 100.

% Is used to denote a converted (output) field. Normally, a CD references the input

data, but prepending it with a percentage sign can be used to peek at the conversion
results.

TTT Represents the field tag:

000 for the record label
001 to ZZZ for other fields
0?? to match all fields beginning with 0
If this part of CD is omitted, the current tag is assumed

(n1) Represents the tag occurrence number; see chapter Rule File Structure for more

information.

SS Represents the subfield mark:

I1 for first indicator
I2 for second indicator
$a to $z, $A to $Z, and $0 to $9 for other subfields
$? for any subfield
If this part of CD is omitted, the complete field is assumed

(n2) Represents the subfield occurrence number; see chapter Rule File Structure for more

information.

/[n3[-]n4]/ Represents the character positions in the (sub)field:

n3 means only character position n3
n3- means character position n3 to the end of the (sub)field
-n4 means character positions from beginning of the (sub)field to n4
If both n3 and n4 are present, characters from position n3 to n4 are assumed
In rule files, 1 is always used to describe the first character position, not 0.
If this part of CD is omitted, the complete (sub)field is assumed

Examples:

001 The complete field 001
000/5/ Character position 5 of the record label
000/11-12/ Character positions 11 to 12 of the record

label
010$a The (first) subfield $a of field 010
100$a/-8/ The first 8 character positions of the $a of

field 100

123I1 The first indicator of field 123
701(n)$a The $a of nth field 701
101$a(n) The nth $a of field 101
123(nt)$a(ns) The nsth $a of ntth field 123
???$? Any field with any subfield
If (Exists(@040)) Tests for the presence of tag 040

N.B. When converting in field order (ConvertInFieldOrder=TRUE), wildcard matching is only
done for a field until a precise match is found. Therefore it’s possible to create rules for converting
a single a field to another while preserving all other fields. In traditional rule order this smart
matching is not done.

Link between Input CD(s) and Output CD(s)

A CD enables the user to address a particular part of a record.

To convert records from one format to another, a set of CDs in the input record must be linked to a
set of CDs in the output record and a set of conversion rules.

Each output CD must be defined together with a set of input CDs and a conversion rule. In fact,
one output CD is usually linked with only one input CD.

Each line in a rule file has the following format:

 [CDIn] | [<][CDOut] | Conversion rule

CDIn is the most important CD for the creation of the CDOut.

A Rule will be evaluated only if a CDIn exists in the input record.
If the CDIn is omitted, the last CDIn in the file is assumed.

CDOut is the CD to be created (or modified).

If the CDOut is omitted, the last CDOut in the file is assumed.
If a ‘<‘ is placed before the CDOut, the CDOut will be added to the input record (in the
memory), creating a pseudo-CDIn. This allows the user to re-convert the newly created
CDIn, to manage complex rules, as rules cannot manipulate CDOut data. Normally i.e.
when ‘<‘ is not present, the CDOut is added to the output record.

Rules describe how to create or modify the CDOut from the CDIn and other CDs, if necessary. If
other CDs are necessary to create the CDOut, they can be accessed from within the rule.

Many rules are simple translations e.g.

111$a | 710$a |

111$a | 710$a | S

Either of the above can be used to place the S(ource) data of UKMARC 111$a into UNIMARC
710$a.

The 'pipe' symbol '|' must have at least one space or tab on each side of it. The two lines below are
identical as far as the software is concerned.

111$a[space]|[space][space][tab]710$a[space]|[tab][tab]

111$a[tab]|[tab]710$a[tab]|[tab]

The following is a slightly more complex example:

[earlier commands]
660 | <66A$2 | 'COMPASS'
66A | 606 |

Here the conversion takes place in two stages: a temporary CDIn is created from the original CDIn
then that CDIn is used to create a complete CDOut field

Here is an example of a simple conversion that removes field 509, moves 508 to 501 and leaves
everything else as is:

Simple conversion to remove field 509 and move field 508 to 501.
Just an example.

508 | 501 | S
509 | <DEL | S

#if (TAG != 'DEL')
???I1 | ???I1 | S
???I2 | ???I2 | S
??? | ??? | S
#endif

For the above to work properly, ConvertInFieldOrder must be TRUE in the ini file.

Occurrences

Each CD can be represented by three occurrence numbers :
 nt: (no. of tag) represents the occurrence of the tag (field)

 ns: (no. of subfield) represents the occurrence of the subfield in the tag

 n: represents the global occurrence of the CD (field + subfield in the record)
Example:

 nt=1 nt=1 nt=1 nt=1
 ns=1 ns=2 ns=1 ns=3
 n=1 n=2 n=1 n=3

123 $a... $a... $b... $a...
123 $c... $a... $a...

 nt=2 nt=2 nt=2
 ns=1 ns=1 ns=2
 n=1 n=4 n=5

For input CDs, occurrences are accessed via nt, ns and n.
For output CDs, occurrences are accessed via nto, nso and no. These are normally used to create
new a new field or subfield in the output.

Occurrences in CDIn and CDOut

As has been described previously, a rule is evaluated when the corresponding CDIn is found in the
input record.

Each corresponding CDIn has particular occurrences (nt, ns and n).

From each CDIn the software must create or modify a particular CDOut and (nt, ns and n) must be
linked with (nto, nso and no).

Beginning with version 1.70 it’s possible to specify the absolute field or subfield index
(occurrence) in the input or output CD. For example the following rule would $a from first 245 to
the second 240 in the output:

245(1)$a | 240(2)$a | S

To describe this in a rule file, the easiest way is to describe CDIn with no occurrence number,
CDOut with occurrence numbers (nt, ns, n, nto, nso or no), and allow rules to access these
occurrence numbers.

Beginning with version 2.00 there is a proper way to always force USEMARCON to create a new
field. This can be accomplished by using occurrence number new:

856$u | 856(new)$u | S

Further on, the latest occurrence can be referenced with newest:

650I1 | 650(new)I1 | S
650I2 | 650(newest)I2 | S
650$a | 650(newest)$a | S

652I1 | 650(new)I1 | S
652I2 | 650(newest)I2 | S
652$a | 650(newest)$a | S

The table below (not for the faint of heart) explains how each type of input occurrence can be
linked to each kind of output occurrence:

R Means the tag/subfield is repeatable,
NR Means the tag/subfield is not repeatable.
BRule Is the first character of the rule

CD In CD Out B

Tag Subfield Tag Occ Subfield Occ Rule COMMENT
NR NR NR NR The CDIn goes in CDOut
NR NR NR R Idem, only one occurrence of CDOut will exist
NR NR R NR Idem, only one occurrence of CDOut will exist
NR NR R R Idem, only one occurrence of CDOut will exist
NR R NR NR + Each subfield of CD In will go in the same subfield

of CD Out (they must be merged : + at beginning
of rule signifies Destination+…).

NR R NR R n Each occurrence of subfield in input will create a
new occurrence of subfield in output.

NR R R N NR Each occurrence of subfield in input will create a
new occurrence of field in output.

NR R R R n Each occurrence of subfield in input will create a
new occurrence of subfield in output

NR R R N R Each occurrence of subfield in input will create a
new occurrence of field in output.

R NR NR NR + Each occurrence of field in input will be merged in
the same subfield (if + is omitted at the beginning
of the rule, an error of format can occur in output).

R NR NR R n Each occurrence of field in input will create a new
subfield in the same field in output

R NR R N NR Each occurrence of field in input will create a new
occurrence of the field in output

R NR R R n Each occurrence of field in input will create a new
subfield in the same field in output

R NR R N R Each occurrence of field in input will create a new
occurrence of the field in output

R R NR NR + Each occurrence of field and/or subfield will be
merged in the same subfield in output (if + is
omitted at the beginning of the rule, an error of
format can occur).

R R NR R n Each occurrence of field and/or subfield in input
will create a new occurrence of subfield in output

R R R N NR Each occurrence of field and/or subfield in input
will create a new occurrence of field in output

R R R R n Each occurrence of field and/or subfield in input
will create a new occurrence of subfield in output

R R R N R Each occurrence of field and/or subfield in input
will create a new occurrence of field in output

R R R Nt R ns Each occurrence of field (numbered nt) will create
a new occurrence of field. Each occurrence of
subfield (numbered ns) will create a new
occurrence of subfield within current field.

The table shows how the link between one particular CDIn to one other particular CDOut can be
described, with n, ns and nt appearing in CDOut occurrences.

Three configurations can occur:

 One particular CDIn is linked to a particular CDOut (1-1). This case is treated in the table.

 A set of particular CDIn are linked to only one CDOut (n-1). This case has two different
configurations:

1. The number of CDIn to be merged is known; it is possible, in the rule, to access each
CDIn to create the appropriate CDOut.

2. The number of CDIn to be merged is unknown. In this case (see table) each

occurrence in the input can be merged in the output. The + at the beginning of the rule
means that every time the rule is evaluated (for each occurrence of each CDIn), the
resulting rule will be merged in the contents of CDOut.

 A particular CDIn must be used to create a set of CDOut (1-n). This case also has two
different configurations:

1. The number of CDOut to be created is known. It is possible to create as many lines in

the rule file as will be created for CDOut, together with appropriate rules.

2. The number of CDOut to be created is unknown. In this case you will be required to
use the Redo command. The part of the rule before Redo is a normal rule used to
generate CDOut. The part of the rule after Redo creates a pseudo-CDIn which will be
used to re-evaluate the rule as many times as necessary (the no is incremented, like nso
or nto etc) until the pseudo-CDIn created is empty. In this particular case the
occurrence number of CDOut will not match any occurrence number of CDIn. In the
rule file nso, nto or no must appear.

 An unknown number of different CDIn’s are used to create a set of CDOut (1-n). In this case
occurrence specifiers new and newest can be used to create and access a new occurrence at
will.

Rule File Structure

Each line of a rule file must have the following structure:

 [TTTin] [(n1)][SSin][(n2)][/n3[-n4]/] | [<][TTTout[(n5)]][SSout[(n6)]][/n7[-n8]/] | Rule

TTTin Represents the field tag of the CDIn which will start the evaluation of the rule:

000 for the record label.
001 to ZZZ for all other fields.
If this part of the CD is omitted the previous TTTin is assumed.

(n1) Represents the tag occurrence number. The values which can be used are:
n, ns, nt, no, nto or a number to specify absolute occurrence. If n1 and n2 are
omitted, the default value of n1 is nt, and the default value of n2 is ns. If only n1
is omitted, its default value is 1.

Ssin Represents the subfield mark:

I1 for first indicator.
I2 for second indicator.
$a to $z, $A to $Z, and $0 to $9 for other subfields.
If this part of CD is omitted, the complete field is assumed.

(n2) Represents the subfield occurrence number. The values which can be used are:
n, ns, nt, no, nso or a number to specify absolute occurrence. If n1 and n2 are
omitted, the default value of n1 is nt, and the default value of n2 is ns. If only n1
is omitted, its default value is 1.

/n3[-n4]/ Represents the character positions in the (sub)fields in the CDIn.

n3 means only character position n3

n3- means character positions n3 to the end of the (sub)field.
-n4 means the character positions from beginning of the (sub)field to n4
If both n3 and n4 are present, characters from position n3 to n4 are assumed.
In rule files, 1 is always used to describe the first character position, not 0.

< Means that the CDOut which is created by the rule will be added to the input record,
not to the output record as it normally would.

TTTout Represents the field tag of the CDOut. It is created or updated during the evaluation

of the rule.
000 for the record label.
001 to ZZZ for all other fields.
??? means that the CDIn is intentionally not converted, otherwise an error
would be generated (this requires CDIn to not contain wildcards, otherwise ???
is treated as a wildcard).
This part of the CD is mandatory.

(n5) Represents the tag occurrence number. The values which can be used are:

n, ns, nt, no, nto or a number to specify absolute occurrence. If n5 and n6 are
omitted, the default value of n5 is nt, and the default value of n6 is ns. If only n5
is omitted, its default value is 1.

SSout Represents the subfield mark.

I1 for first indicator.
I2 for second indicator.
$a to $z, $A to $Z, and $0 to $9 for other subfields.
If this part of CD is omitted, the complete field is assumed.

(n6) Represents the subfield occurrence number. The values which can be used are:

n, ns, nt, no, nso or a number to specify absolute occurrence. If n5 and n6 are
omitted, the default value of n5 is nt, and the default value of n6 is ns. If only n5
is omitted, its default value is 1.

/n7[-n8]/ Represents the character positions in the (sub)fields in the CDOut.

n7 means only character position n7

n7- means character position n7 to the end of the (sub)field.
-n8 means character positions from beginning of the (sub)field to n8
If both n7 and n8 are present, characters from position n7 to n8 are assumed.
In rule files, 1 is always used to describe the first character position, not 0.

Rules

Basic Concept

To convert input records into output records, each CDIn must be linked to a CDOut with a rule.
This rule must enable the software to make a lot of string operations. The basic concept is as
follows.

When you use a pocket calculator the current result is on the screen and it can be modified using
operator keys (+,-, etc.). The final result is calculated step by step. For example, if you want to
calculate the result of 1/(7+(4+3)*5), you can do:

 4
 +
 3
 = 7

 5 35
 +
 7
 = 42

1

x 0.02380952380952

This can also be described as :

 4+3;S 5+7;1/S

Here';' is used to indicate the end of a sequence of commands, and S represents the result of the
last operation.

This basic concept is used in USEMARCON i.e. a set of basic operators is used to create the final
result which will be the content of the CDOut (essentially string manipulation).

The rule syntax is:

 [+][instruction1 ; [instruction2 ; [… instructionn]…]

 The + at the beginning means the actual content of CDOut is merged with result of the

following rule.

 The default instruction i.e. when no instruction is specified in the rule, is to copy CDIn to
CDOut (or merge it if a + appears at the beginning of the rule).

Note: In all instructions, upper case and lower case characters can be used.

Variables

CD variables

There are three Content Designator variables :

 S represents the result of the last instruction; it is the Source of the current operation. It can be
either a text string or a number, depending on the result of the last instruction.

 D represents the current contents of the Destination (output). This allows for adding or
modifying the contents of a specific field when used with e.g. absolute indexes (occurrences).

 [@][TTT[(n1)]] [SS[(n2)] [/[n3[-]n4]/]) which represents any valid CD. If TTT is omitted, the
current CDIn Tag is assumed. If SS is omitted, the whole Tag (or fixed position of it) is
assumed. SS can be either $x or I1 or I2.

Occurrence variables

There are six occurrence variables:

 n Represents the occurrence of CDIn in input record

 nt Represents the occurrence of the current tag of CDIn in the input record

 ns Represents the occurrence of the current subfield within the current tag

 no Represents the occurrence of CDOut in the output record

 nto Represents the occurrence of the current tag of CDOut in the output record

 nso Represents the occurrence of the current subfield of CDOut within the current tag

Other variables

 TAG represents the tag name of the field to be converted.

 SUB represents the subfield code of the field to be converted (without $ sign).

 UTF8 indicates whether UTF-8 mode is active (e.g. If (UTF8) Then ‘\c3\a4’ Else ‘ä’)

Literal values

There are two kinds of literal values :

 '…' Represents a literal string (enclosed with a single quotation marks).

Example:

 'This is a string'

Each character can be represented by its hexadecimal value preceded by a backslash (\). Some
special characters are managed in strings:

- the ‘\’ which must be coded as ‘\\’ or its hexadecimal value,
- the subfield delimiter which can be coded ‘$’ or its hexadecimal value (0x1F),
- the character ‘$’ which must be coded as ‘\$’ or its hexadecimal value.

Example:

 NSB is ‘\88’

 ii… Represents a literal numeric (where i is a digit).

Example: 123 is a numeric

Date and Time variables

There are six date and time variables:

 Year Contains the current year in the format YYYY

 Month Contains the current month (from 1 to 12)

 Day Contains the current day in the month (from 1 to 31)

 Hour Contains the current hour (from 0 to 23)

 Minute Contains the current minute within the hour (from 0 to 59)

 Second Contains the current second within the minute (from 0 to 59)

Instructions

There are six kinds of instruction: conditional, boolean, loop, memory, conversion and translation.
Each instruction can begin with an upper case letter, the following letters must be in lower case.

Conditional instructions

These are the possible conditional instructions:

 If (…) Then

The syntax of this instruction is:

If (boolean instruction) Then translation instruction

If the result of a boolean instruction is TRUE then the instruction after Then is evaluated, as well
as any subsequent instructions contained in the rule. If the result of a boolean instruction is
FALSE then the CDOut is not created. If conditions where Then is omitted don’t stop at FALSE
but will evaluate any subsequent rules too and create CDOut.

Example (UNIMARC to UKMARC):

 101$a | 008/36-38/ | If (n=1) Then S

Character positions 36-38 in the 008 are only filled in if the occurrence number of 101$a is 1. In
other cases, this rule does not do anything with 008.

 101$aeng
becomes:
 008 with eng in character positions 36-38

Example (UNIMARC to UKMARC):

 101$a | 041$a | + S

041$a is merged with 101$a each time a 101$a appears in the input record.

 101$aeng$afre$ager
becomes:
 041$aengfreger

Example (UNIMARC to UKMARC):

 215$a | 300(n)$a | … ; From(First(Number)); If (S!='')
 Then From(First(String)); If …

After evaluation of the From(First(Number)) instruction, the result (S) can be either empty or not
empty. If S is not empty, then the evaluation of the rule continues, else 300(n)$a is not created.
Note that != is used to represent ‘not equal to’.

 If (…) Then … Else

The syntax of this instruction is :

If (boolean instruction) Then translation instruction Else translation instruction

If the result of a boolean instruction is TRUE then the instruction after Then is evaluated. If the
result of a boolean instruction is FALSE then the instruction after Else is evaluated.

In both cases any subsequent instructions of the rule will be evaluated.

Example (UNIMARC to UKMARC):

 071I1 | 538(n)$a | Table(‘538.tbl’); If (Exists($b)) Then S+’:b’
 +$b Else S
 071$a | 538(n)$b |

The table (538.tbl) converts the value of indicator 1, e.g. 2, into an expression, e.g. ‘Pl. no.’; if
there is a $b in the 071 containing the name of the agency, e.g. ‘Breitkopf & Härtel’; 538$a will
contain ‘Pl. no.: Breitkopf & Härtel’ else it will simply contain ‘Pl. no.’. The command line that
follows puts the number itself into $b of the 538 field.

 071.20$aB. & H. 8801$bBreitkopf & Härtel
becomes:
 538.00$aPl. no. Breitkopf & Härtel$bB. & H. 8801

 If (…) translation instruction

 If (…) translation instruction else translation instruction

These work like If-Then and If-Then-Else with the important difference in that the CDOut is
created regardless of whether the condition was true.

It is possible to nest If … [Then] … Else statements and blocks:
If (boolean instruction) {

If (boolean instruction) Itranslation instruction Else translation instruction
 }

Else translation instruction

 While (…) translation instruction

While can be used to execute the instruction as long as the condition remains true. There’s a hard-
coded safety limit of 1000 executions, but care must be taken not to cause conversion to slow

down due to unnecessary looping.

 For (PLACEHOLDER From num1 To num2 [Condition (…)]) translation instruction

For can be used to execute an instruction or a group of instructions grouped with curly brackets a
certain number of times. PLACEHOLDER is a string whose all occurrences in the instruction are
replaced with the current loop number counting from num1 to num2 during each execution of the
instruction. If num1 is larger than num2 the counter is decremented with each loop. Condition is
optional and specifies a Boolean condition that must be true for the loop to continue.

Example:

 For (X1 From 1 To 3) While (PreviousSubIn(S, $n, '=X1') = 'c') {
ReplaceOcc('$n' By '. ', '=X1', Strict); ReplaceOcc('$p' By ', ', '=X1',
Strict) };

Curly brackets { } group together multiple instructions to be carried out as a result of a
conditional statement. A semicolon is required after a closing curly bracket if there are further
instructions.

Example:

 If (…){ Replace('$c' By ' = '); Replace('$d' By ' ; '); };

Boolean instructions

There are two kinds of boolean instructions: simple boolean instructions and boolean functions.
Boolean instructions can be grouped with parentheses, and combined with And, Or and Not
operators.

 boolean1 And boolean2: is TRUE if each boolean expression is TRUE, otherwise it is FALSE

 boolean1 Or boolean2: is TRUE if one of both boolean expressions are TRUE, otherwise it is
FALSE

 Not boolean: is TRUE if boolean expression is FALSE. It is FALSE if boolean expression is
TRUE.

Note: Not affects the complete following expression. If this is not desired, Not and the expression
must be enclosed in parenthesis (e.g. If ((Not $c Precedes $d) And …)).

 (boolean): is a valid boolean expression

 Simple boolean instructions

A simple boolean instruction can be:

 t_instruction1 = t_instruction2: The result is TRUE if the result of both instructions is the

same string, otherwise it is FALSE. If one instruction is a number and the other a string, the
number is converted into a string before comparing them.

Example :

 12 = 12, 12 = '12' are True but

 13 = 12, 13 = 'b13' are False, because of the blank before 13.

 t_instruction1 != t_instruction2: The result is TRUE if the instructions are not equal, otherwise
it is FALSE. If one instruction is a number and the other is a string, the number is converted
into a string before comparing them.

 t_instruction1 IN t_instruction2: The result is TRUE if the result of t_instruction1 is a substring
of result of t_instruction2 , otherwise it is FALSE. If the instruction is a number it is converted
into a string.

Example :

 ‘every’ In ‘hello everybody’ is TRUE

 ‘19’ In ‘1994’ is TRUE

 t_instruction1 > t_instruction2: The result is TRUE if t_instruction1 is greater than

t_instruction2 , otherwise it is FALSE. If both instructions are numbers, the comparison is
made between the numbers. If one is a string, the comparison is made between the strings.
One string is classified as greater than another if it is sorted alphabetically after another.

 t_instruction1 < t_instruction2: The result is TRUE if t_instruction1 is less than t_instruction2 ,
otherwise it is FALSE. If both instructions are numbers, the comparison is made between
numbers. If one is a string, the comparison is made between strings. A string is less than
another, if the other is sorted alphabetically before it.

 t_instruction1 t_instruction2: The result is TRUE if t_instruction1 is greater than or equal to
t_instruction2 , otherwise it is FALSE. If both instructions are numbers, the comparison is
made between numbers. If one is a string, the comparison is made between strings. A string is
greater than another if it is sorted alphabetically after it. A string is equal to another if it is
sorted alphabetically in the same order.

 t_instruction1 t_instruction2: The result is TRUE if t_instruction1 is less than or equal to
t_instruction2 , otherwise it will be FALSE. If both instructions are numbers, the comparison
is made between the numbers. If one is a string, the comparison is made between strings. A
string is less than or equal to another (respectively), if it is sorted alphabetically before it or if
it is in the same order.

 subfield1 Precedes subfield2: The result is TRUE if subfield1 appears before subfield2 ,
otherwise it is FALSE. Subfield is a CD in which SS is mandatory. If the Tag of each subfield
is not the same, the result will be FALSE.

Example:

 700$a Precedes 700$b,
 $a Precedes $c,

700$a Precedes $c - WARNING: Here $c means $c of the current CDIn. If the current CDIn is in
Tag 700, the comparison will work, if it is not, the result will be FALSE.

 subfield1 Follows subfield2 : The result is TRUE if subfield1 appears after subfield2 ,
otherwise it is FALSE. If the Tag of each subfield is not the same, the result is FALSE.

 Boolean functions

There are three boolean functions in the software at present.

 Exists(CD): This is TRUE if CD exists in the input record (@CD) or output record(%CD),

or FALSE if it does not exist. It can be used in combination with ‘Not’.
Example:

 710$e | 712$c | If (($e Precedes $c) Or (Not Exists($c)) Then S

 ExistsIn('string', CD): This is TRUE if CD exists in the given string such as S. It can be used

in combination with ‘Not’.

Example:

 710 | 712 | If (($e Precedes $c) Or (Not Exists(S, $c)) Then S

 InTable('string', 'file_name'): Returns TRUE if string is found in table file file_name. Can be
used for example to check if S is one of the values listed in the table. InTable will ignore any
#DEFAULT value in the table.

Example:

 008/7/ | 008/7/ | If (InTable(S, 'valid_codes.tbl')) Then S Else '|'

Loop instruction

There is only one loop instruction.

Redo: This resolves the problem of (1 to n) conversion. It creates (or modifies) the current
CDOut with the result of the preceding instructions. It increments no and nso or nto. Then the
following instructions create a pseudo-CDIn. If that is not empty, the rule will be re-evaluated
to create (or modify) CDOut.

Example :

 041$a | 101$a(no) | Sto(0); To(3); Redo; Mem(0); From(4)

Suppose an input record contains the following 041 fields:

 041.00 $afreengspa
 041.00 $ager

When the software reaches the first 041, it creates a 101$a (no is 1). In 101$a, it copies the first 3
characters of 041$a (To(3)). When it reaches Redo, no is incremented, and the output record
contains:

 101. $afre

After Redo, the software gets 041$a back (it has been stored with Sto(0), and restored with
Mem(0)), skips the first 3 characters in it, and, returning to the beginning of the command line,
stores the result by Sto(0). The pseudo-CDIn contains ‘engspa’: it is not empty. The rule is then re-
evaluated with ‘engspa’ as the content of CDIn.
The software then creates a new occurrence of $a (no is 2), with the first three characters of of the
pseudo-CDIn:

 101. $afre$aeng

After Redo, the process is repeated with just ‘spa’ in the pseudo-CDIn (no is 3).

 101. $afre$aeng$aspa

By the end of the command line the software skips 3 characters and the pseudo-CDIn is empty.
So, the next loop does nothing and the evaluation of the rule is finished.

When the software reaches the second 041$a, it works the same way and creates a third
occurrence of $a in 101.

 101. $afre$aeng$aspa$ager

Memory instructions

It is necessary to be able to store intermediate results in complex rules.

In the USEMARCON software, 100 memories are available. Four functions enable the
manipulation of those memories :

 Sto(m): m is in 0 to 99. This function stores the current value of S in the mth memory. The old

content of this memory is lost. Content of S is not changed.

 Mem(m): This function returns the content of mth memory. If this memory has not been
initialized, the function returns an empty string.

 Exc(m): This function stores the current value of S in the mth memory, and returns the old
content of this memory.

 Clr(m): This function clears the content of mth memory. Contents of S are not changed.
The contents of the memory are not cleared automatically, therefore it is possible to exchange
information between rules and even between records.

Conversion instructions

There are three types of instructions in USEMARCON: string, number and boolean. A string can
be converted to a number and a number to a string. Sometimes the conversion is made
automatically, but sometimes it can be useful to have a conversion facility.

 Str(t_instruction): The result of this instruction is a string. If t_instruction is a number, it is

converted to a string. If t_instruction is a string, it stays a string.

 Val(t_instruction): The result is a number. If t_instruction is a string containing only a number
(like '123'), it is converted to a number. If the string contains anything else, it is converted to
number 0. If t_instruction is a number it stays a number.

 Ordinal(t_instruction): The result is the ordinal number of the currently converted record. Its
value is generally 1 for the first converted record, 2 for the second one, and so on. The first
number is set in the Initialization parameters of the .INI file. NB! The OrdinalNumber
setting is only updated in the .INI file if UpdateOrdinalNumber setting in the same
section is TRUE. The update is unsafe in most environments where multiple conversions can
be running simultaneously. If 20 records have been converted earlier, the first number can be
set to 21 so that the current session correctly numbers the next batch of records. The
command:

001 | 001 | ‘UNI’ + Ordinal(7)

then creates a record with record control number ‘UNI0000021’ i.e. 21 right-justified with
zeroes, to 7 characters.

Translation instructions

Translation instructions can be grouped with parentheses.

Simple translation instructions
A simple translation instruction can be:

 t_instruction1 + t_instruction2: If both t_instructions are numbers, the result is the sum of

those numbers. If at least one is a string, the result is a string containing t_instruction1 merged
with t_instruction2.

 t_instruction1 - t_instruction2: Both t_instructions must be numeric (if at least one is a string,
an error appears), the result is the difference between t_instruction1 and t_instruction2.

 t_instruction1 * t_instruction2: Both t_instructions must be numeric (if at least one is a string,
an error appears), the result is the product of t_instruction1 and t_instruction2.

 t_instruction1 / t_instruction2: Both t_instructions must be numeric (if at least one is a string,
an error appears), the result is the integer division of t_instruction1 and t_instruction2.

String functions
String functions are functions that manipulate or return a string.

 From(t_instruction[,Strict]): If t_instruction is a number p, the result of the function is the

substring of S from pth position (first position is 1). If t_instruction is not a number, or is a
number less than or equal to 0, or greater than S length, this function returns an empty string.
If Strict is not specified and blank characters appear at the beginning of the result, they are
skipped. If Strict is specified, blank characters at the beginning of the result are kept.

 To(t_instruction[,Strict]): If t_instruction is a number p, the result of the function is the
substring of S truncated in pth position (first position is 1). If t_instruction is not a number, or
is a number less than or equal to 0, or greater than S length, this function returns an empty
string. If Strict is not specified and blank characters appear at the end of the result, they are
truncated. If Strict is specified, blank characters at the end of the result are kept.

 Len(t_instruction): Returns the length of the given string.

 Between(t_instruction1 , t_instruction2 [,Strict]): Both t_instructions must be a number. If at
least one is not, the result is an empty string. If both are a number p1 and p2 the result is a
substring of S from p1

th position to p2
th position. If Strict is not specified any blank characters

appearing at the boundaries of the result are deleted. If Strict is specified, any blank characters
are kept.

 Next(subfield1 [, subfield2][,Strict]): subfield is a CD in which SS is mandatory. Each
subfield is assumed to be in CDIn. If only subfield1 is specified, this function will return the
first subfield following current CDIn, identified by subfield1, until the end of the field. If both
subfield1 and subfield2 are specified, the function will return the first subfield following
current CDIn, identified by subfield1, until the subfield identified by subfield2. If Strict is not

specified any blank characters appearing at the boundaries of the result are deleted. If Strict is
specified, any blank characters are kept. If the subfield is not found, the function returns an
empty string.

 Last(subfield1 [, subfield2][,Strict]): Each subfield is assumed to be in CDIn. If only subfield1
is specified, this function will return the first subfield preceding current CDIn, identified by
subfield1, until the beginning of the field. If both subfield1 and subfield2 are specified, the
function will return the first subfield preceding current CDIn, identified by subfield1, until the
subfield identified by subfield2 . If Strict is not specified any blank characters appearing at
boundaries of the result are deleted. If Strict is specified, any blank characters are kept. If the
subfield is not found, the function returns an empty string.

 NextSub: Returns the next subfield code (without the dollar sign) relative to the current
subfield or '' if current subfield is the last one.

 PreviousSub: Returns the previous subfield code (without the dollar sign) relative to the
current subfield or '' if current subfield is the first one.

 NextSub(subfield [, 'occurrence']): Returns the next subfield code (without the dollar sign)
relative to the specified subfield or '' if none is found. 'occurrence' can be specified and is used
to compare the occurrence of the specified subfield.

Example:

// Add comma if next subfield of second or later $n is $p
245$n | 245$n | S; If (NextSub($n, '>1') = 'p') Then S + ' ,'

 NextSubIn('string', subfield [, 'occurrence']): Returns the next subfield code (without the dollar
sign) relative to the specified subfield in the given string or '' if none is found. 'occurrence' can
be specified and is used to compare the occurrence of the specified subfield.

Example:

// Move all $n subfields after $a if next subfield after $a
// is not $p
If (NextSubIn(S, $a) != 'p') MoveAfter('n', $a);

 PreviousSub(subfield [, 'occurrence']): Returns the next subfield code (without the dollar sign)
relative to the specified subfield or '' if none is found. 'occurrence' can be specified and is used
to compare the occurrence of the specified subfield.

Example:

// Add [text] if previous subfield is $h and this subfield is not the first one
245$n | 245$n | If (PreviousSub($n(ns), '>1') = 'h') Then S + ' [text]'

 PreviousSubIn('string', subfield [, 'occurrence']): Returns the next subfield code (without the
dollar sign) relative to the specified subfield in the given string or '' if none is found.
'occurrence' can be specified and is used to compare the occurrence of the specified subfield.

Example:

// Convert $n to ' : ' if if comes after $a in S
If (PreviousSubIn(S, $n) = 'a') Then Replace('$n' By ' : ', Strict);

 MoveBefore('source subfields', subfield, 'target subfields', ['prefix', 'suffix', 'preserved

prefixes']): Moves 'source subfields' in the current field before subfield changing their codes
to 'target subfields' at the same time. Additionally a prefix can be added to any preceding
subfield and suffix in the end of the given subfields. Can only be used when the source or
target is a complete field.

 MoveAfter('source subfields', subfield, 'target subfields', ['prefix', 'suffix', 'preserved
prefixes']): like MoveBefore, but moves the source subfields after subfield.

source subfields A list (string) of subfield codes to move
(all subfields with the listed codes are
moved). The order of subfield codes is
insignificant – the subfields are moved in
the order they are in the field.

Subfield The CD describing the subfield before
which the source subfields are moved.

target subfields A list (string) of subfields codes that the
existing fields are given after they are
moved. If empty, the subfields keep their
existing codes.

Prefix Optional prefix that will be added to the
end of the subfield right before the first of
the moved subfields.

suffix Optional suffix that will be added to the
end of the last moved subfield.

preserved prefixes A pipe-separated list of prefixes that are
preserved at their correct position.

As a subfield may have a prefix that is
stored at the end of the previous subfield,
moving other subfields between these two
subfields causes problems with the
positioning of the prefix. If such prefix is
found before the position where the
subfields are to be moved, its position will
be updated so that it is still adjacent to the
original subfield.
e.g. There is field:

$a Title / $c More : $b Add.
If subfield $b was moved after $a without
taking care of prefixes, the result would be:
$a Title / $b Add.$c More :

With preserved prefix list of ' / | : |. ' the
result is:

$a Title : $b Add / $c More.

 Examples:
// Move subfields c, d and e right before b and change c to f:
 MoveBefore('cde', $b, 'fde', '', '', ' / | : |. ');

// Move subfields f and g right after a. Add suffix ' – ' to a:
 MoveAfter('fg', $a, '', ' – ');

Note: When adding a single subfield to a complete field and using MoveBefore or MoveAfter it
will be necessary to use e.g. D+S as the first rule instead of just +S. Otherwise the full contents of
the field will not be available for processing and MoveBefore or MoveAfter will fail.

 MoveFirst('source subfields', 'target subfields', ['prefix', 'suffix', 'preserved prefixes']): Moves
given subfields to the beginning of the field. See MoveBefore and MoveAfter for more
information.

 MoveLast('source subfields', 'target subfields', ['prefix', 'suffix', 'preserved prefixes']): Moves
given subfields to the end of the field. See MoveBefore and MoveAfter for more information.

 Delete(t_instruction [, At Beginning|At Ending|At Boundaries] [,Strict]): This function deletes
any occurrence of the string t_instruction from S. If t_instruction is a number, it is converted
into a string. If At Beginning is specified, t_instruction is deleted in S, only if it is at the
beginning of S. If At Ending is specified, it is only deleted if it appears at the end of S. If At
Boundaries is specified, it is only deleted if it appears at the boundaries of S. If Strict is not
specified any blank characters appearing after/before the deleted characters of the result are
deleted. If Strict is specified, any blank characters are kept.

 Replace('x' by 'y' [,Strict]): Replace may be used to replace a subfield code with another
subfield code, a subfield code with a mark of punctuation, a mark of punctuation with a
subfield code or one string of text with another. If Strict is not specified, any blank characters
at the beginning or end of the string are removed.

 ReplaceOcc(('x' by 'y', '>1' [,Strict]): ReplaceOcc is used to replace multiple occurrences of the
same subfield with different things in output. This is typically used when converting repeated
fields to a single field with punctuation. This usually means that occurrences of the subfield
after the first must be replaced by marks of punctuation. If Strict is not specified, any blank
characters at the beginning or end of the string are removed.

 Table('file_name'): file_name is the name of a file (in the rule file directory) enclosed within
single quotation marks i.e.'filename.tbl', containing the description of a table of coded data.
The name prefix must not exceed 8 characters in length (because of the DOS environment)
and must have the .tbl extension. The function should return S converted as described in the
table. If the conversion is not possible the function returns an empty string and an error is
appended to the log file.

Example:

 008/16-17 | 102$a | Table('Uk3166b.tbl') // Country codes table

 Sort('string'): string is a string enclosed within single quotation marks where each character is

a subfield identifier. This function can only appear in a rule linked with a complete CDOut. It
enables the subfields of CDOut to be sorted when the record is finished. N.B. Sort must be
specified alone without any other rules.

Example:

 010 | 022(n) | S

 010 | 022(n) | Sort('abcdz')

 SortField(): This function enables the field to be put into its place (sorted alphanumerically in
relation to other fields) when the record is finished. Only useful when SortRecord option is
false. N.B. SortField must be specified alone without any other rules.

Example:

 010 | 022(n) | S
 010 | 022(n) | SortField()

 RegFindPos('regular expression'): Searches S for the specified ‘regular expression’. Returns
the start position of the match, if the expression was found, 0 if no match and -1 if an error
occurred.

 RegFindPos('string to search', 'regular expression'): Searches ‘string to search’ for the
specified ‘regular expression’. Returns the start position of the match, if the expression was
found, 0 if no match and -1 if an error occurred.

 RegFindNum('regular expression'): Searches S for the specified ‘regular expression’. Returns
the number of matches found, 0 if no match and -1 if an error occurred.

 RegFindNum('string to search', 'regular expression'): Searches ‘string to search’ for the
specified ‘regular expression’. Returns the number of matches found, 0 if no match and -1 if
an error occurred.

 RegFind('regular expression'): Searches S for the specified ‘regular expression’. Returns >= 0
if the expression was found.

 RegFind('string to search', 'regular expression'): Searches ‘string to search’ for the specified
‘regular expression’. Returns >= 0 if the expression was found.

 RegMatch(index): Returns the specified match from a previous RegFind. The index is a
number from 0 to 9.

 RegReplace('find expression', 'replace expression' [, 'parameters']): replaces ‘find expression’
with ‘replace expression’. \\1 \\2 etc. can be used to reference the matched parts. ‘parameters’
can contain 'g' to indicate a global change (replace all).

Note: All regular expressions use the PCRE (Perl-compatible regular expressions) library.
Information about the features and usage can be found at http://www.pcre.org/pcre.txt and
http://en.wikipedia.org/wiki/PCRE.

Examples:

Replace "Most recent [anything] not available" with "Not available: most recent [anything]":

RegReplace('Most recent (.*) not available', 'Not available: most recent \\1');

Empty anything that has only numbers in it (^ denotes beginning of string and $ end of string. \\d*
is any number of characters 0-9):

RegReplace('^\\d*$', '');

One way to replace "Available from [anything]" with "Begins at [anything]":

If ((RegFindNum('^Available from (.*)') > 0)) Then 'Begins at ' + RegMatch(1);

Swap around two words:

RegReplace('(.*) (.*)', '\\2 \\1');

Knowing the syntax of regular expressions is required to be able to get the most out of them. All
expressions are case sensitive.

 RegReplaceTable('table name', [, 'parameters']): Works like RegReplace but reads ‘find

expression’ and ‘replace expression’ from a table file. The file follows the formatting of the
rule file unlike other table files. Possible parameters:

g = global, change all occurrences (as usual with regular expressions)
f = first only, processes the lines until the pattern matched

Example table file contents:

 Regularly required replacements

'auth' | 'author'
'titl' | 'title'
 '(\\d\\d\\d\\d)' | '[\\1]’ // Adds square brackets around
 // 4 digits (1999 -> [1999])
'(\\d\\d)-(\\d\\d)-(\\d\\d\\d\\d) | '\\3-\\2-\\1'

 Upper('string'): Converts the given string to uppercase

 Lower('string'): Converts the given string to lowercase

 Mixed(('string'): Converts the given string to mixed case (first capital, rest

N.B. If you need literal $ in the rule, it needs to be escaped by prepending it with a backslash: \$
(otherwise it is translated to a subfield delimiter). Backslash (\) must be escaped too as shown in
the examples: \\.

Number functions
Number functions are functions returning a number.

 BFirst(t_instruction |Number|String): If t_instruction is specified, this function returns the

position of the beginning of the first occurrence of t_instruction in S. If t_instruction is a
number it is converted into a string. If Number is specified, the function returns the position
of the beginning of the first number in S. If String is specified, the function returns the
position of the beginning of the first string in S. Returns 0 if no match is found.

 EFirst(t_instruction |Number|String): If t_instruction is specified, this function returns the
position of the end of the first occurrence of t_instruction in S. If t_instruction is a number it

is converted into a string. If Number is specified, the function returns the position of the end
of the first number in S. If String is specified, the function returns the position of the end of
the first string in S. Returns 0 if no match is found.

 BLast(t_instruction |Number|String): If t_instruction is specified, this function returns the
position of the beginning of the last occurrence of t_instruction in S. If t_instruction is a
number it is converted into a string. If Number is specified, the function returns the position of
the beginning of the last number in S. If String is specified, the function returns the position of
the beginning of the last string in S. Returns 0 if no match is found.

 ELast(t_instruction |Number|String): If t_instruction is specified, this function returns the
position of the end of the last occurrence of t_instruction in S. If t_instruction is a number it is
converted into a string. If Number is specified, the function returns the position of the end of
the last number in S. If String is specified, the function returns the position of the end of the
last string in S. Returns 0 if no match is found.

Comments and Multi-line Rules

Comments can appear on a separate line, or at the end of a line, and are preceded by a double slash
//. It is recommended that general comments are placed before the rule they refer to.

Rules can be written on multiple lines: the first line contains CDIn, then space, pipe (|), space, then
CDOut, then space, pipe (|), space, then the beginning of the rule. When rules are on multiple lines
the last character of all but the last line must be a semicolon.

Examples:

// Bibliography & index note
504 | 320 I1 |
504 | 320 I2 |
504$a | 320 $a |
// Contents note
505 | 327 I1 |
505 | 327 I2 |
505$a | 327 $a |
// Accompanying material note
525 | 307 I1 |

008/16-17 | 102$a |Table('Uk3166b.tbl') // Country codes table

041$a | 101$a(no) | Sto(0); to(3); Redo;
 Mem(0): From(4)

Example Rules
Examples are often the most powerful documentation. Here are some examples of techniques to
achieve different goals.

A complete conversion that removes field 509, moves 508 to 501 and leaves everything else as is:

Simple conversion to remove field 509 and move field 508 to 501.
Just an example.

508 | 501 | S
509 | <DEL | S

#if (TAG != 'DEL')
???I1 | ???I1 | S
???I2 | ???I2 | S
??? | ??? | S
#endif

For the above to work properly, ConvertInFieldOrder must be TRUE in the ini file.

Convert field 005 as is, but create it if it doesn’t exist:

005 | 005 | S
000 | 005 | If (Not Exists(@005)) Then
Year+Month+Day+Hour+Minute+Second+'.0'

 Convert only subfields a, b and c in field 260 and remove anything in parenthesis from subfield c:

260I1 | 260I1 | S
260I2 | 260I2 | S
260$a | 260$a | S
260$b | 260$b | S
260$c | 260$c | S; RegReplace('.*\\((.*)\\).*', '\\1')

Scenario: Field 560$x might contain any identifier. It needs to be moved to the proper
subfield of field 787. Define a macro for checking for an ISBN to avoid repeating long
code (the #define is a single line) and use along with other rules to accomplish this:

#define macro ISBNRegExp | (RegFind('^[\\dxX]{10}(\\(.*\\))?\$') >= 0 Or
RegFind('^[\\dxX\\-]{13}(\\(.*\\))?\$') >= 0 Or RegFind('^\\d{13}(
\\(.*\\))?\$') >= 0 Or RegFind('^[\\d\\-]{17}(\\(.*\\))?\$') >= 0)

// ISSN
560$x | 787$x | If (RegFind('\\d{4}-\\d{4}') >= 0) Then S
// ISBN
560$x | 787$z | If (ISBNRegExp) Then S
// Other identifiers
560$x | 787$o | If (Not (RegFind('\\d{4}-\\d{4}') >= 0 Or
ISBNRegExp)) Then S

6. ERROR MESSAGES

Format

System messages describing errors detected during format checking or data conversion are stored
by default in an ASCII text file in the relevant sub-directory for the conversion; this is known as
the Error Log File. In common with the other system files, the path and name of the Error Log File
may be changed in the Initialization Parameters of the .INI File using a text editor such as MS
Windows Notepad. Beginning from version 1.3 the file name can be left empty so that an error log
is not created.

For each error, one line is logged in the report file; this enables easier filtering of the report file.

Each line begins with either WARNING, ERROR or FATAL.

 WARNING will not stop the program

 ERROR gives you the option to stop in Interactive mode but will not stop in Batch mode

 FATAL errors will not allow the software to proceed further.

The rest of the line consists of:

‘(‘, <coded error number>, ‘)’, <the error description>, <a description of the problem>

Line ::= <kind of error> (<coded number>) - <error message> : <parameters>
<kind of error> ::= ‘FATAL’ - 'ERROR' - 'WARNING'
<coded number> ::= number
<error message> ::= words
<parameters> ::= words

Error Definitions

Errors are numbered 000-9999. The first digit describes the part of the process in which the error
appears:

1xxx The error appears during reading of a MARC file, i.e. a format problem.
2xxx The error appears during MARC checking in input (in comparison with the input
checking table).
3xxx The error appears during character translation.
5xxx The error appears during rule analysis or conversion.
7xxx The error appears during checking of the MARC output.
9xxx Other internal errors.
Examples:

WARNING(2001) - Invalid input format checking rule (item expected) …
ERROR(3001) - Character not transcoded (unable to find it in transco
table) : 0x90 in …
FATAL(7011) -....

6. USING USEMARCON IN ANOTHER APPLICATION

Usemarcon object

The Usemarcon object is used to control operations of the program. It is declared in usemarconlib.h.
Include this file in another project and link with the appropriate library such as usemarcon_library.lib or
libusemarcon.a.

For the best performance the object should be reused without calling SetInteractive, SetIniFileName,
AddConfigOverride or ClearConfigOverrides. Recreating the object or changing these settings will cause
USEMARCON to parse the configuration file, rule file, any tables etc. which will slow down the first call
to Convert.

See program/usemarcon.cpp for an example (the part after #else // api based run example).

Usemarcon.SetInteractive(value);

Setting value to true will cause USEMARCON to output messages to console. Should normally be set to
false when embedding in another program.

Usemarcon.SetIniFileName(filename);

Defines the location of the .ini file where parameters are defined. The path can be an absolute path or
relative to the current working directory.

Usemarcon.SetMarcRecord(pcRecord, iLength);

Used only in the on the fly conversion - pcRecord is a string containing a MARC record to be converted
in ISO 2709 format. iLength contains the length of the string.

Usemarcon.SetForceVerbose(value);

Set value to true and the program will print out warning and error messages to the screen in addition to
the error log when running the command line version.

Usemarcon.SetDisableCharacterConversion(value);

Set value to true and the program will not do character set conversion. Default is false.

Usemarcon.AddConfigOverride(section, setting, value);

Add a configuration override that overrides the corresponding ini file setting.

Usemarcon.ClearConfigOverrides();

Remove all configuration overrides previously added with AddConfigOverride().

Usemarcon.Convert();

Instructs the conversion to convert the input record.

Usemarcon.GetMarcRecord(pcRecord, iLength);

Used only in the on the fly conversion - retrieves the converted record to pcRecord and its length in
iLength. The output record is in ISO 2709 format. NB: the string is allocated with strdup and must be
freed separately.

Usemarcon.GetWarningCount(msg);

Used to retrieve the number of warning reported during Convert().

Usemarcon.GetErrorCount(msg);

Used to retrieve the number of errors reported during Convert().

Usemarcon.GetLastWarningMessage(msg);

Used to retrieve the last warning message after Convert(). This can be used to display warning messages
in the controlling program.

Usemarcon.GetLastErrorMessage(msg);

Used to retrieve the last error message after Convert(). This can be used to display error messages in the
controlling program.

Upgrading to version 3 from older versions

The library interface has been changed in version 3. While it’s functionally equivalent to the old one, the
naming and internal structure has been changed. The following changes are required to compile against
version 3 compared to older versions:

Include usemarconlib.h instead of objectlist.h
Use Usemarcon class instead of CDetails
Call Convert() instead of Start()

