
The translation process for 3R will include several steps that are entirely new. The new process
is intended to make the work of translators easier and more efficient, but this initial translation
process will be challenging as we work our way through the process and identify the problem
areas. This document is meant to familiarize translators with the necessary steps for completing
a translation and getting it published in the new Toolkit. The steps listed here suggest a
schedule, but we are not in a good position to set a hard schedule, given the inevitable issues
we will encounter in this initial translation and the varying levels of time and resources that each
translation team has available.

Steps to completing the translation

1. Translate RDA Reference​ -- This is already underway. It includes translation of RDA
Value Vocabularies and Element Sets. Ideally, teams will be close to completing this
work in June, but again this is not a requirement.

2. Trados Training​ -- This too is underway for Daniel and James. We will be implementing
new software for the RDA translation work. SDL Trados GroupShare is another SDL
product that serves as a project management system for SDL Trados Studio. It will allow
translation teams to better organize their work and share translation memories and term
bases among themselves. In June, there will be GroupShare training for translation
project managers, followed soon after by Studio training sessions for translators. There
will 3 translator sessions in order to keep the groups small. The groups are 1) French,
Spanish, Italian and Catalan; 2) German, Norwegian, Finnish and Hungarian; and 3)
Arabic. All training sessions will be recorded and made available to the translations
teams.

3. Translate the "Translation Table”​ -- This table is located in the Content Management
System (CMS) and is a simple table that requires translation of repeated section and
subsection headings associated with Entity and Element files (e.g., Definition and
Scope, Element Reference, etc.). This table will be used in the generation of
Entity/Element files. This step will be preceded by a CMS training session.

4. Configure CMS directory, files, and ditamaps for each language​ -- English language
files and ditamaps, including the keydef map will be copied into each language folder.
This will ensure the parallel structure of the directories and the transfer of the appropriate
IDs. ALA Publishing will execute this step in June.

5. Translate boilerplate file​ -- “Boilerplate” refers to sentences and paragraphs that are
frequently re-used in the RDA text. Boilerplate text is found in the bp_master file in the
CMS and is the first file that should be uploaded to Studio for translation. The boilerplate
is pulled into RDA instructions using content references or content key references,
commonly referred to as conrefs or conkeyrefs (see the conref and key sections below
for more on how this works).

1

6. Run Operational Script​ -- The Operational script pulls in the RDA Reference translation
from the Registry and populates the Entity/Element files copied in the language folders
(see section 4 above) with the Definition and Scope, Element Reference, and Related
Elements sections. ALA Publishing will execute this step.

a. The first run of the operational script will also insert the translated headings from
the Translation table into the Entity/Element files (see section 3 above).

b. The script, in combination with the translated boilerplate file, will automatically
complete the translation of over 2,500 files that are composed of only registry
data and boilerplate.

7. StudioTranslation ​-- The 600+ remaining files of RDA content will need to be translated

in Studio. ALA Publishing will create the packets for translation and provide them to the
translation teams. The likely flow of files will be as follows:

a. Entity Chapters -- the files will flow in packets for each entity
b. Guidance Chapters -- a single packet
c. Related Resources -- a single packet.

8. CMS editing​ -- After Trados translation is complete the output will be uploaded to the

CMS by ALA Publishing. Files should be reviewed in the CMS to check that they have
processed properly. Any needed edits discovered in the review should be made in
Studio, processed and uploaded anew to the CMS. This step will include further CMS
training.

9. User Interface​ -- Translation of the Toolkit user interface (UI) is required before the
publication of the translation on the Toolkit. ALA Publishing will provide a .po file for the
translation of the UI text strings. The completed UI translation file should be returned to
ALA Publishing.

10. Examples​ -- In the new toolkit, the examples are kept in a separate directory and
conkeyreffed into the instructions. This allows the RDA Examples Editor to use examples
in multiple places and gives the examples editor more control over the examples. The
translation of English language examples and the development of unique examples for
translations will be a bit trickier. A separate document on examples will be forthcoming.
While examples are an important part of RDA Toolkit, they are not officially part of RDA,
and they are expected to follow after the translation of the RDA text.

11. Help​ -- This content is not required by the translation agreement, but teams are welcome
to translate it. ALA Publishing will provide files, and translation of the material should be
done inStudio. Screen shots used in the Help section are from the English version.
Screen shots from the appropriate language version can be added to a Help translation
once the RDA translation is completed.

Important concepts
There are several important concepts associated with DITA and Studio that are critical to the
architecture of RDA and are frequently used and discussed in the production process. The

2

translators should familiarize themselves with these topics to better understand the translation
process.

Content references
The content reference, commonly called conref, is a kind of link in reverse. A regular link takes
you from the document you are in to a new piece of text in a different document. A conref takes
a piece of text in one document and places it in the document you are in. This allows editors to
re-use content from another DITA file in a file they are editing. In RDA, this most frequently
involves re-using boilerplate text within multiple element files, although this is also used to insert
examples into RDA instructions.

There are 2 advantages to the conref. First, it ensures consistency of wording. Second, if you
need to change that wording, you only need to do it once in the boilerplate file and the change is
then reflected in the other files.

● Conref content appears in the CMS editor tool with a grey background.
● Conref content will not appear in Studio.

A content key reference, commonly called a conkeyref, uses a key in the link rather than a
filename. Conkeyrefs are the preferred link in RDA over conrefs and the more frequently used.

DITA maps
The DITA map is a means for organizing DITA files and subunits into specific order. DITA maps
are a distinct file type (.ditamap). RDA has two primary uses for DITA maps:

1. Pulldown menu entries (for example, work_menu.ditamap), and

2. Page browsing/controlling the navigation buttons (previous/next) at the foot of element
pages (for example, work_browse.ditamap).

It should be noted that DITA maps can include other DITA maps, and you may open a DITA file
from a DITA map.

Translation teams will need to review DITA maps and edit the maps so that they are properly
alphabetized for each language.

Keys
Keys are persistent identifiers for files and are defined in a special kind of ditamap called a
keydef map. The keys are used to create links using keyrefs and conkeyrefs. The key can
replace the target filename in a link, so if the filename changes or the target of the link changes,
the editor can simply revise the keydef map and none of the links will break.

Tags and their attributes
The tags found in RDA files are generally familiar to those who have worked in XML
environment. The typical file uses the following structural tags in a hierarchical structure. The
asterisk indicates required tags.

● Topic*
● Body*

3

● Section*
● Division (div)
● Paragraph (p)

Tags have attributes. Most importantly, these structural tags all have an ID attribute. These IDs
are critical to RDA Toolkit supporting translations. The IDs must be consistent throughout the
translations in order for the site to work.

The other important and frequently-used attribute is outputclass. This is used to indicate specific
display requirements. In RDA the output class is used to signal header, condition, and option
formatting.

Finally there are some links in RDA to external websites that reference other international
standards. This links will need to be reviewed as the translator may want to redirect the link to a
language specific version of the link target. FOr example a link to an IFLA document in English
may be revised to point to the French or Arabic version of the document.

Translations memories
Most of you should be familiar with translations memories in Studio. This will be essential to the
editing and maintenance of your translation. The CMS files and the translation memory need to
match. If you make a change in the CMS, it will not get picked up in the translation memory and
the next export from Trados will overwrite the changes. To prevent this from happening, any text
edits need to be made in Trados. This will update the translation memory and then the export
from Studio can be uploaded to the CMS.

4

